

FACTORS THAT INFLUENCE THE INTENTION OF MICRO, SMALL, AND MEDIUM ENTERPRISES (MSMEs) TO USE MARKETPLACES IN THE DIGITALIZATION ERA

Erni Suprihatin*, Usep Suhud, Agung Wahyu Handaru

Universitas Negeri Jakarta, Indonesia

Email: nuhamuazzaztra@gmail.com*

ABSTRACT

The purpose of this research is to find variables that affect the intention of micro, small, and medium enterprises (MSMEs) to use e-marketplaces. Innovation diffusion theory (IDT) and the technology acceptance model (TAM) are applied in this research to understand how MSMEs adapt to e-marketplaces. While IDT shows how innovation can be accepted and used, TAM shows how MSMEs can accept and use technology through perceived usefulness, perceived ease of use, and attitude characteristics. IDT's approach in this research is limited to compatibility, which is a decisive element in the selection of MSMEs to join the e-marketplace. The perceived trust factor in this research is suggested to support the impact of compatibility on MSMEs' intention to use e-marketplaces. This research uses a survey methodology using questionnaires. A total of 219 samples were taken from MSMEs in Tangerang City, Indonesia, who are at least 17 years old and have previously used the e-marketplace. According to the findings, compatibility significantly influenced the intention to use through perceived trust intervention factors, but the intention to use was not significantly influenced by the intervention variables of attitude, perceived usefulness, or perceived ease of use. The findings of this research have implications for digital marketing plans and strategies for MSMEs and marketplace companies and government policy guidance.

Keywords: e-marketplaces; IDT; intention to use; MSMEs; perceived trust; technology acceptance model (TAM)

INTRODUCTION

The low involvement of micro, small, and medium enterprises (MSMEs) in Indonesia's digital ecosystem is a special concern for the government, considering that MSMEs are the backbone of the national economy and can leverage workforce participation in the world of work (Abed, 2020; Alaei et al., 2022; Talukder et al., 2019; Yang & Ahn, 2020; Yusoff et al., 2021). According to records from the Central Statistics Agency in 2023, the involvement of business actors in going digital has only reached 51.60 percent, whereas business actors who have used e-marketplaces have only reached 19.75 percent (Anggraeny & Baihaqi, 2021). So it is not surprising that in the last few years, digitalization has become one of the mainstay programs of the Indonesian government in an effort to encourage national economic recovery through the 30 million MSME go digital movement, which is targeted to be achieved in 2024. To achieve this target, the government is collaborating with e-marketplace companies, normalizing online buying and selling (Sihombing & Permana, 2023; Wahyuni et al., 2020; Wisnu, 2020).

This research applies the innovation diffusion theory (IDT) and the technology acceptance model (TAM) to identify factors that influence the intention of MSMEs to use e-marketplaces. In a research, it is explained that in general, online sales are more influenced by the presence of TAM, which is formed by two key variables, namely, perceived usefulness (PU) and perceived ease of use (PEOU) (Ye & Zhang, 2014). Setiyadi, Mangiwa, and Nugraheni (2019) found that compatibility factors, perceived usefulness, and perceived enjoyment influenced respondents' intentions to use the e-marketplace. TAM shows that PU and PEOU are the two main determinants in explaining the adoption intention of individual users (Lou & Li, 2017). Lou and Li (2017) argue that TAM is a relatively simple model that can be modified or mixed differently by integrating the innovation diffusion theory (IDT).

Apart from perceived usefulness and perceived ease of use, individual attitudes toward technology are also important to research. According to Anggraini et al. (2019), individual attitudes toward e-commerce show the level of individual good and bad e-commerce assessments. The higher

the user's innovation, the higher the tendency to feel compatible with technology and recognize its benefits ((Cabrera-Sánchez et al., 2020; Chau et al., 2020; Dakduk et al., 2020; Talukder et al., 2018). Meanwhile, from the results of a research of 701 respondents in Spain, Kalinic et al. (2019) found that perceived trust plays an important role as an antecedent of intention to use and as a mediator of subjective norms and satisfaction. In another research conducted on 334 MSMEs in Tangerang City in 2020, Wisnu (2020) found that the intention of micro-entrepreneurs in Tangerang City to use marketplaces in their businesses was more influenced by four determinants, namely performance expectancy, effort expectancy, social influence, and facilitating conditions.

The low involvement of micro, small, and medium enterprises (MSMEs) in Indonesia's digital ecosystem is a pressing issue that significantly impacts national economic growth. MSMEs serve as the backbone of the Indonesian economy, contributing to workforce participation and local economic development (Liébana-Cabanillas et al., 2022; Omar Ali et al., 2020; Sudaryati et al., 2017). However, as the Central Statistics Agency recorded in 2023, only 51.60 percent of business actors have engaged in digitalization, with a mere 19.75 percent utilizing e-marketplaces. These figures highlight a gap in integrating MSMEs into the digital economy, underscoring the urgent need for effective strategies to promote digital adoption (Herzallah & Mukhtar, 2016; Hussein et al., 2020; Junaidi, 2021). Previous research has identified various barriers to digitalization for MSMEs, such as lack of resources, limited digital skills, and apprehension towards technology adoption. However, a noticeable lack of studies specifically addresses how these challenges relate to the intention to use e-marketplaces in Indonesia. By failing to explore the interplay between perceived trust, compatibility, and other critical factors, existing literature leaves a gap that this research aims to fill.

This research applies the innovation diffusion theory (IDT) and the technology acceptance model (TAM) to identify factors that influence the intention of MSMEs to use e-marketplaces, filling a critical gap in the literature. Unlike previous studies that have primarily focused on broad factors such as perceived usefulness or ease of use, this research uniquely emphasizes the role of compatibility and perceived trust as significant determinants of MSMEs' intention to adopt e-marketplaces. By narrowing the focus to these specific factors and examining them within the context of Tangerang City, this research provides novel insights into how MSMEs can effectively transition into the digital marketplace. Furthermore, it contributes to the existing literature by integrating TI and TAM to highlight the juxtaposition and interplay between perceived trust and compatibility in shaping usage intentions—something that has not been thoroughly explored in earlier research. Based on prior research and in an effort to generate new ideas, this research intends to ascertain whether compatibility, attitude, perceived usefulness, perceived ease of use, and perceived trust all affect MSMEs' intention to use e-marketplaces. However, it is limited to the micro-business actors of Tangerang City, Banten Province, Indonesia.

METHOD

This research examines the impact of compatibility on the intention to use e-marketplaces among MSMEs in Tangerang City, Indonesia, with attitude, perceived ease of use, perceived usefulness, and perceived trust as intervening variables. Conducted in May 2024, the research employs a quantitative approach using a structured questionnaire distributed via Google Forms to 219 MSME respondents. The research utilizes the SEM method with SPSS 22 and AMOS 24 software to analyze the relationships between six variables. Respondents were selected from micro-entrepreneurs registered at the Tangerang City Office of Industry, Trade, Cooperatives, Small and Medium Enterprises. The research instrument consists of a Likert-scale questionnaire measuring exogenous (compatibility), intervening (attitude, perceived ease of use, perceived usefulness, and perceived trust), and endogenous (intention to use) variables. The research's statistical validation process includes validity and reliability tests, ensuring that instruments meet the required standards.

The research further applies model accuracy tests using Goodness of Fit (GOF) criteria such as Chi-Square, RMSEA, GFI, AGFI, TLI, and CFI to evaluate SEM model suitability. Key statistical measures include a validity test through factor loading (>0.5), an average variance extract (AVE >0.5), and a reliability test with construct reliability (CR ≥ 0.7). The GOF indicators determine the model's fitness, with RMSEA ≤ 0.08 , GFI ≥ 0.90 , and CFI ≥ 0.90 considered strong model fits. The research highlights SEM's advantages, including its ability to analyze complex relationships, test measurement errors, and

confirm theoretical models. This research provides insights into how MSMEs in Tangerang adopt e-marketplaces, helping understand the key factors influencing their intention to use e-commerce.

RESULTS AND DISCUSSION

Validity Test Results

Validity testing can be done using the AMOS 24 program through the following steps:

1. Draw the graphic design using the AMOS 24 program, as shown in the figure.

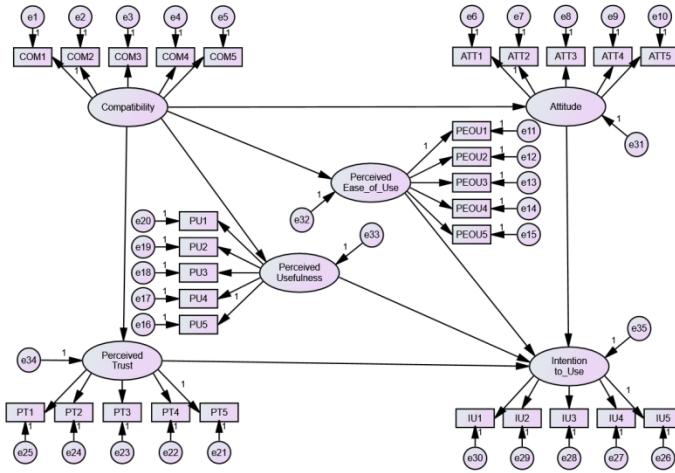


Figure 1. Design of the Relationship Graph between Variables

2. Validity test using loading factor, which if the outer loading value > 0.5 , then the instrument is said to be valid.
3. Using average variance extract (AVE), if the AVE value > 0.5 , then the instrument is said to meet the minimum permissible validity standards and, if formulated into a formula, can be formulated as follows:

$$Variance\ Extracted = \frac{\sum std.\ loading^2}{\sum std.\ loading^2 + \sum e_i}$$

Table 1. Validity Test Results

Item	Indicator	Variable	Loading Factor	Results
X ₁	COM ₁	<---	Compatibility	0,875 VALID
X ₂	COM ₂	<---	Compatibility	0,91 VALID
X ₃	COM ₃	<---	Compatibility	0,885 VALID
X ₄	COM ₄	<---	Compatibility	0,922 VALID
X ₅	COM ₅	<---	Compatibility	0,895 VALID
Y _{1.1}	ATT ₁	<---	Attitude	0,953 VALID
Y _{1.2}	ATT ₂	<---	Attitude	0,969 VALID
Y _{1.3}	ATT ₃	<---	Attitude	0,96 VALID
Y _{1.4}	ATT ₄	<---	Attitude	0,968 VALID
Y _{1.5}	ATT ₅	<---	Attitude	0,943 VALID
Y _{2.1}	PEOU ₁	<---	Perceived_Ease_of_Use	0,889 VALID
Y _{2.2}	PEOU ₂	<---	Perceived_Ease_of_Use	0,94 VALID
Y _{2.3}	PEOU ₃	<---	Perceived_Ease_of_Use	0,948 VALID
Y _{2.4}	PEOU ₄	<---	Perceived_Ease_of_Use	0,959 VALID
Y _{2.5}	PEOU ₅	<---	Perceived_Ease_of_Use	0,948 VALID
Y _{3.1}	PU ₁	<---	Perceived_Usefulness	0,963 VALID
Y _{3.2}	PU ₂	<---	Perceived_Usefulness	0,963 VALID
Y _{3.3}	PU ₃	<---	Perceived_Usefulness	0,967 VALID
Y _{3.4}	PU ₄	<---	Perceived_Usefulness	0,973 VALID
Y _{3.5}	PU ₅	<---	Perceived_Usefulness	0,966 VALID

Item	Indicator	Variable	Loading Factor	Results
Y _{4.1}	PT ₁	<---	Perceived_Trust	0,943
Y _{4.2}	PT ₂	<---	Perceived_Trust	0,948
Y _{4.3}	PT ₃	<---	Perceived_Trust	0,928
Y _{4.4}	PT ₄	<---	Perceived_Trust	0,832
Y _{4.5}	PT ₅	<---	Perceived_Trust	0,932
Z ₁	IU ₁	<---	Intention_to_Use	0,951
Z ₂	IU ₂	<---	Intention_to_Use	0,932
Z ₃	IU ₃	<---	Intention_to_Use	0,946
Z ₄	IU ₄	<---	Intention_to_Use	0,944
Z ₅	IU ₅	<---	Intention_to_Use	0,946

Description: COM (X) is compatibility; ATT (Y₁) is na attitude; PEOU (Y₂) is perceived ease of use; PU (Y₃) is perceived usefulness; PT (Y₄) is perceived trust, and IU (Z) is the intention to use.

Based on the loading factor data shown in Table 1. With a loading factor > 0.50 and the results of the AVE calculation > 0.5, as shown in Table 4, it can be concluded that the variables in this research are valid.

Reliability Test Results

Reliability tests can be calculated through construct reliability and variance extracted. Reliability test: if the construct reliability (CR) value ≥ 0.7 , then the instrument is said to be reliable and can be manually formulated as follows:

$$Construct\ Reliability = \frac{(\sum std.loading)^2}{(\sum std.loading)^2 + \sum e_j}$$

Table 2. Construct Reliability (CR) Calculation Component Items

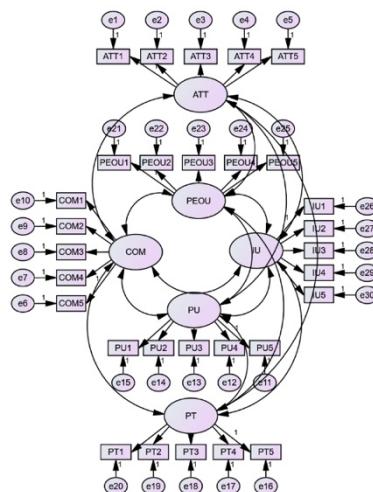
Item	Loading Factor	Loading Factor ²	Standar Error
X1	COM1	0,875	0,765625
X2	COM2	0,91	0,8281
X3	COM3	0,885	0,783225
X4	COM4	0,922	0,850084
X5	COM5	0,895	0,801025
Y1.1	ATT1	0,953	0,908209
Y1.2	ATT2	0,969	0,938961
Y1.3	ATT3	0,96	0,9216
Y1.4	ATT4	0,968	0,937024
Y1.5	ATT5	0,943	0,889249
Y2.1	PEOU1	0,889	0,790321
Y2.2	PEOU2	0,94	0,8836
Y2.3	PEOU3	0,948	0,898704
Y2.4	PEOU4	0,959	0,919681
Y2.5	PEOU5	0,948	0,898704
Y3.1	PU1	0,963	0,927369
Y3.2	PU2	0,963	0,927369
Y3.3	PU3	0,967	0,935089
Y3.4	PU4	0,973	0,946729
Y3.5	PU5	0,966	0,933156
Y4.1	PT1	0,943	0,889249
Y4.2	PT2	0,948	0,898704

Item	Loading Factor	Loading Factor^2	Standar Error
Y4.3	PT3	0,928	0,861184
Y4.4	PT4	0,832	0,692224
Y4.5	PT5	0,932	0,868624
Z1	IU1	0,951	0,904401
Z2	IU2	0,932	0,868624
Z3	IU3	0,946	0,894916
Z4	IU4	0,944	0,891136
Z5	IU5	0,946	0,894916

Table 3. Construct Reliability (CR) Calculation Components

Variabel	Total Number		
	Loading Factor	Loading Factor^2	Standar Error
X	4,487	4,028059	0,089
Y1	4,793	4,595043	0,045
Y2	4,684	4,39101	0,051
Y3	4,832	4,669712	0,032
Y4	4,583	4,209985	0,071
Z	4,719	4,453993	0,049

Table 4. Validity and Reliability Test Results

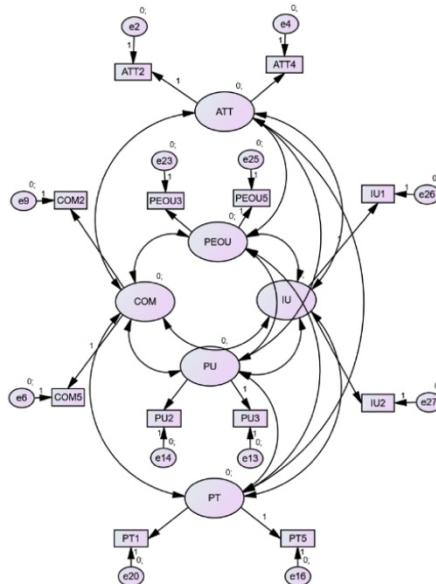

Variable	Variance Extract (AVE)	Results	Construct Reliability (CR)	Results
X	0,978382627	Valid	0,980550699	Reliable
Y1	0,990301814	Valid	0,990698636	Reliable
Y2	0,988518711	Valid	0,989229145	Reliable
Y3	0,993193968	Valid	0,993421053	Reliable
Y4	0,983415032	Valid	0,984744306	Reliable
Z	0,989118349	Valid	0,989723154	Reliable

From the calculation results above, it was obtained that the Variance Extract value > 0.5 and the Construct Reliability (CR) value > 0.7 , so it can be concluded that the variables in this research are reliable.

Structural Equation Model (SEM) Analysis Results

Analysis Confirmatory Factor Analysis (CFA) dengan AMOS

The initial model, which is formed based on the parameters and indicators used in the Confirmatory Factor Analysis research with AMOS, can be seen in the following figure:


Figure 2. Initial Model for CFA Analysis

The CMIN output obtained from the model above shows results that do not meet the model fit requirements, namely $P > 0.05$ and $CMIN/DF \leq 2.00$, as described in the table below:

Table 5. Initial CMIN Model Output for CFA Analysis

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	105	1227,826	390	,000	3,148
Saturated model	495	,000	0		
Independence model	60	13648,870	435	,000	31,377

Therefore, modifications are made by analyzing modification indices and removing indicators with large M.I. values, and successively modifications are made by removing e5, e10, e8, e29, e11, e1, e28, e19, e19, e7, e22, e24, e18, e17, e12, e30, e3, e15, and e21.

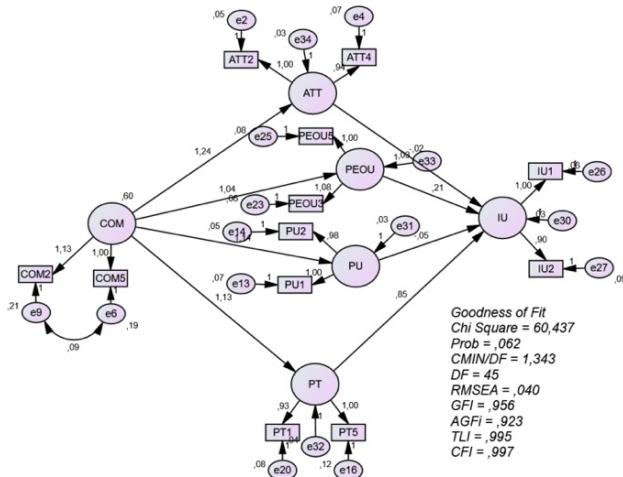


Figure 3. Final Model for CFA Analysis

Table 6. CMIN Model Output After Processing for CFA Analysis

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	51	50,419	39	0,104	1,293
Saturated model	90	,000	0		
Independence model	24	4548,694	66	0,000	68,920

The CMIN output obtained from data processing produces a model as shown in Figure 4 and Table 11. From the results of the data processing, the $P > 0.05$ is obtained, which is 0.104, and $CMIN/DF \leq 2.0$, which is 1.293, so the model can be said to be fit because it has met the requirements of the fit model, namely the $P > 0.05$ and $CMIN/DF \leq 2.00$. Furthermore, this model will be used as data analysis to determine the relationship between variables in this research, with a model design as shown in the following figure:

Figure 4. Model Fit for CFA (Confirmatory Factor Analysis)

The CMIN output obtained from the model above shows results that are by the model fit requirements in CFA, namely P value = 0.05 and CMIN/DF ≤ 2.00 as follows:

Table 7. CMIN Model Fit Output for CFA Analysis

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	33	60,437	45	,062	1,343
Saturated model	78	,000	0		
Independence model	12	4550,374	66	,000	68,945

Analisis Indeks Goodness of Fit

The analysis was carried out on several SEM suitability test index parameters with the test results in the table below:

Table 8. Recapitulation of Goodness of Fit Index Analysis Results

Goodness of Fit Index	Value	Cut off Value (Limit Value)	Decision Criteria
Chi-Square	60,437	67,505	Good Fit
Significance Probability	0,062	$\geq 0,05$	Good Fit
RMSEA	0,040	$\leq 0,08$	Good Fit
GFI	0,956	$\geq 0,90$	Good Fit
AGFI	0,923	$\geq 0,90$	Good Fit
CMIN/DF	1,343	$\leq 2,00$	Good Fit
TLI	0,995	$\geq 0,90$	Good Fit
CFI	0,997	$\geq 0,90$	Good Fit

Based on the table above and the decision reference criteria for model suitability, the suitability of the research model according to AMOS 24 can be interpreted as follows:

1. Chi-Square, absolute—fit measure when following a statistical test related to significant requirements; the smaller, the better. In the table above, chi-square shows a value of 60.437, which can be said to be good. This value is smaller than the chi-square table at a level between 40 and 50, with a significance level of 0.05, namely with a value between 55.758 and 67.505, as shown in Table 14 below:

Table 9. Absolute Test - Fit Measure

Degree of freedom (df)	41
Significance level (α)	0,05
Chi-square table level 40, df 0.05	55,758
Chi-square table level 50, df 0.05	67,505

2. The significance probability value in this research is 0.062. This value is smaller than 0.05 so the significance probability can be said to be fit.
3. RMSEA, Root Mean Square Error of Approximation, is an absolute fit measure if the average difference per degree of freedom is expected to occur in the population and not in the sample. In this research, the RMSEA value obtained was 0.040. This value is smaller than 0.08, according to the requirement that $RMSEA \leq 0.08$ is a good fit.
4. GFI, Goodness of Fit Index, absolute fit measure if the value ranges from 0 to 1 with a higher value being better. $GFI \geq 0.90$ is a good fit, while $0.80 \leq GFI \leq 0.90$ is a marginal fit, and < 0.80 is not a fit. In this research, the GFI value obtained was 0.956. This value is greater than 0.90 so GFI can be said to be fit.
5. AGFI, Adjusted Goodness of Fit Index, absolute fit measure if the value ranges from 0 to 1 with a higher value being better. $AGFI \geq 0.90$ is a good fit, while $0.80 \leq AGFI \leq 0.90$ is a marginal fit, and < 0.80 is not a fit. In this research, the AGFI value was obtained at 0.923. This value is greater than 0.90 so AGFI can be said to be fit.
6. CMIN / DF is the Chi-square value divided by the degree of freedom. Junaidi (2021) emphasized that Byrne, a previous researcher, proposed that a ratio value < 2 is a measure of fit, so CMIN / DF in this research is said to be fit because the value is below 2, which is 1.343.
7. TLI, Tucker-Lewis Index, known as the non-normed fit index (NNFI), is an absolute-fit measure if the value ranges from 0-1 with a higher value being better. $TLI \geq 0.90$ is a good fit, while $0.80 \leq TLI \leq 0.90$ is a marginal fit, and < 0.80 is not a fit. In this research, the TLI value obtained was 0.995, so in this research model, TLI can be said to be fit because its value is greater than the required one.
8. CFI, Comparative Fit Index, is an absolute fit measure if its value ranges from 0 to 1, with a higher value being better. $CFI \geq 0.90$ is a good fit, while $0.80 \leq CFI \leq 0.90$ is a marginal fit, and < 0.80 is not a fit. In this research, the CFI value obtained was 0.997, so in this research model, CFI can be said to be fit because its value is greater than the required one.

Hypothesis Testing

Hypothesis testing can be said to be significant if the Critical Ratio (CR) value ≥ 1.967 follows the rules stated by Haryono and the P value < 0.05 , while the strength of the influence can be seen in the estimated value based on the Generalized Least Squares Estimates-Regression Weights in the following table:

Table 10. Regression Weights: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	P	Label
ATT	<---	COM	1,238	,055	22,653	***	Accepted
PEOU	<---	COM	1,045	,050	20,816	***	Accepted
PU	<---	COM	1,142	,053	21,699	***	Accepted
PT	<---	COM	1,131	,056	20,106	***	Accepted
IU	<---	ATT	-.018	,143	-,126	,900	Rejected
IU	<---	PEOU	,210	,167	1,258	,209	Rejected
IU	<---	PU	-,051	,161	-,318	,750	Rejected
IU	<---	PT	,854	,203	4,204	***	Accepted

Based on the table above, it can be seen that:

1. H_1 : Compatibility has a positive and significant effect on attitude. The results of the C.R. analysis, 22.653, $CR > 1.967$, support this hypothesis, which is accepted.
2. H_2 : Compatibility positively and significantly affects perceived ease of use. The results of the C.R. analysis, 20.816, $CR > 1.967$, support this hypothesis.
3. H_3 : Compatibility has a positive and significant effect on perceived usefulness. This is supported by the results of the C.R. analysis of 21.699, $CR > 1.967$, so the hypothesis is accepted.
4. H_4 : Compatibility has a positive and significant effect on perceived trust. The results of the C.R. analysis of 20.106, $CR > 1.967$, support this hypothesis, which is accepted.
5. H_5 : Attitude does not significantly and positively influence intention to use. The result of the C.R. analysis, which shows a value of -0.126, supports this because $C.R. < 1.967$, and the hypothesis is rejected.

6. H₆: Perceived ease of use does not significantly and positively influence intention to use. The result of the C.R. analysis, which shows a value of 1.258, supports this because C.R. < 1.967, and the hypothesis is rejected.
7. H₇: Perceived usefulness does not significantly and positively influence intention to use. The result of the C.R. analysis, which shows a value of -0.318, supports this because C.R. < 1.967, and the hypothesis is rejected.
8. H₈: Perceived trust has a positive and significant effect on intention to use. This is supported by the proof of SEM analysis, which obtained C.R. > 1.967, namely 4.204. So, the hypothesis is accepted.

CONCLUSIONS

In conclusion, the findings of this research affirm that compatibility and perceived trust are significant factors influencing the intention of micro, small, and medium enterprises (MSMEs) to adopt e-marketplaces. The results indicate that while MSMEs recognize the benefits of entering the digital marketplace, their willingness to engage heavily relies on their perception of trust and the compatibility of these platforms with their existing business practices. To address these challenges and promote higher rates of digital adoption among MSMEs, marketplace providers should focus on building trust through transparent practices, reliable customer support, and strong data protection measures. Initiatives such as offering trials, demonstrations, and user testimonials can further enhance perceived trust and facilitate a smoother transition into the digital realm.

Policymakers also have a crucial role in this ecosystem. They should consider implementing training programs aimed at enhancing digital literacy among MSME owners and employees, ensuring they have the skills necessary to navigate e-marketplaces effectively. Incentives, such as subsidies or grants for digital tools and services, could be offered to alleviate the initial financial burden on MSMEs venturing into the digital space. Additionally, fostering partnerships between government entities, educational institutions, and marketplace providers can create a supportive network that addresses the unique challenges faced by MSMEs. By taking these actionable steps, both marketplace providers and policymakers can significantly enhance the digitalization efforts of MSMEs, ultimately contributing to the broader goal of economic recovery and sustainability in Indonesia's digital landscape.

REFERENCES

Abed, S. S. (2020). Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. *International Journal of Information Management*, 53. <https://doi.org/10.1016/j.ijinfomgt.2020.102118>

Alaei, A. M., Taleizadeh, A. A., & Rabbani, M. (2022). Marketplace, reseller, or web-store channel: The impact of return policy and cross-channel spillover from marketplace to web-store. *Journal of Retailing and Consumer Services*, 65. <https://doi.org/10.1016/j.jretconser.2020.102271>

Anggraeny, R. D., & Baihaqi, I. (2021). Analysis of E-Marketplace Use in East Java's MSMEs Using the Technology Acceptance Model Approach. *KnE Social Sciences*. <https://doi.org/10.18502/kss.v5i5.8853>

Anggraini, R. Y., Purnomasidhi, B., & Hariadi, B. (2019). The determinant in ecommerce behavior with decomposed theory of planned behavior model. *South East Asia Journal of Contemporary Business, Economics and Law*, 18(5), 42–52.

Cabrera-Sánchez, J. P., Ramos-De-luna, I., Carvajal-Trujillo, E., & Villarejo-Ramos, Á. F. (2020). Online recommendation systems: Factors influencing use in E-commerce. *Sustainability (Switzerland)*, 12(21). <https://doi.org/10.3390/su12218888>

Chau, N. T., Deng, H., & Tay, R. (2020). Critical determinants for mobile commerce adoption in Vietnamese small and medium-sized enterprises. *Journal of Marketing Management*, 36(5–6). <https://doi.org/10.1080/0267257X.2020.1719187>

Dakduk, S., Santalla-Banderali, Z., & Siqueira, J. R. (2020). Acceptance of mobile commerce in low-income consumers: evidence from an emerging economy. *Heliyon*, 6(11). <https://doi.org/10.1016/j.heliyon.2020.e05451>

Herzallah, F., & Mukhtar, M. (2016). The impact of perceived usefulness, ease of use and trust on managers' acceptance of e-commerce services in small and medium-sized enterprises (SMEs) in Palestine. *International Journal on Advanced Science, Engineering and Information Technology*, 6(6). <https://doi.org/10.18517/ijaseit.6.6.1377>

Hussein, L. A., Kiumarsi, S., Baharudin, A. S., & Hilmi, M. F. (2020). Factors Influencing the Intention to Continue using B2B e-Commerce in Manufacturing SMEs. *Engineering, Technology and Applied Science Research*, 10(2). <https://doi.org/10.48084/etrasr.3373>

Junaidi. (2021). Aplikasi AMOS dan Structural Equation Modeling (SEM). In UPT Unhas Press.

Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. *Journal of Retailing and Consumer Services*, 49(December 2018), 143–153. <https://doi.org/10.1016/j.jretconser.2019.03.016>

Liébana-Cabanillas, F., Muñoz-Leiva, F., Molinillo, S., & Higueras-Castillo, E. (2022). Do biometric payment systems work during the COVID-19 pandemic? Insights from the Spanish users' viewpoint. *Financial Innovation*, 8(1). <https://doi.org/10.1186/s40854-021-00328-z>

Lou, A. T. F., & Li, E. Y. (2017). Integrating innovation diffusion theory and the technology acceptance model: The adoption of blockchain technology from business managers' perspective.

Omar Ali, S. R., Wan Marzuki, W. N. K., Mohd Said, N. S., Abdul Manaf, S. M., & Adenan, N. D. (2020). Perceived Ease of Use and Trust Towards Intention to Use Online Banking in Malaysia. *Jurnal Intelek*, 15(1). <https://doi.org/10.24191/ji.v15i1.273>

Sihombing, Y. R., & Permana, J. (2023). Factors Influencing Indonesians' Intentions to Use the Tokopedia Online Marketplace. *Asian Journal of Business and Accounting*, 16(2). <https://doi.org/10.22452/ajba.vol16no2.8>

Sudaryati, E., Agustia, D., & Syahputra, M. 'Illiyun. (2017). The Influence of Perceived Usefulness, Perceived Ease of Use, Attitude, Subjective Norm, and Perceived Behavioral Control to Actual Usage PSAK 45 Revision on 2011 with Intention as Intervening Variable in Unair Financial Department. <https://doi.org/10.2991/icoi-17.2017.30>

Talukder, M. S., Chiong, R., Bao, Y., & Hayat Malik, B. (2018). Acceptance and use predictors of fitness wearable technology and intention to recommend: An empirical research. *Industrial Management and Data Systems*, 119(1), 170–188. <https://doi.org/10.1108/IMDS-01-2018-0009>

Talukder, M. S., Chiong, R., Bao, Y., & Hayat Malik, B. (2019). Acceptance and use predictors of fitness wearable technology and intention to recommend: An empirical research. *Industrial Management and Data Systems*, 119(1). <https://doi.org/10.1108/IMDS-01-2018-0009>

Wahyuni, S., Widodo, J., Zulianto, M., & Islami, N. N. (2020). The analysis of e-commerce utilization in Micro, Small and Medium Enterprises (MSMEs) at Jember. *IOP Conference Series: Earth and Environmental Science*, 485(1). <https://doi.org/10.1088/1755-1315/485/1/012037>

Wisnu, A. M. P. (2020). Analisis Faktor Yang Mempengaruhi UMKM Di Kota Tangerang Dalam Menggunakan Online Marketplace Sebagai Sarana Jual Beli Online Dengan Model UTAUT. *E-Jurnal Atma Jaya*, 17(2).

Yang, J. J., & Ahn, S. C. (2020). The Effects of Attitude, Subjective Norm, and Behavioral Intention on Perceived Values in Traditional Marketplaces. *Journal of Distribution Science*, 18(10). <https://doi.org/10.15722/jds.18.10.202010.25>

Ye, L. R., & Zhang, H. H. (2014). Sales promotion and purchasing intention: applying the technology acceptance model in consumer-to-consumer marketplaces. *International Journal of Business, Humanities and Technology*, 4(3), 1–5.

Yusoff, M. N. H. Bin, Zainol, F. A., Ridzuan, R. H., Ismail, M., & Afthanorhan, A. (2021). Psychological traits and intention to use e-commerce among rural micro-entrepreneurs in malaysia. *Journal of Theoretical and Applied Electronic Commerce Research*, 16(5). <https://doi.org/10.3390/jtaer16050102>